(b) Выращивание информации (1)

[1] [2] [3] [4]

(b) Выращивание информации

Немало кибернетиков занимается сейчас проблемой «гипотезо-творческой автоматики». «Теория», формируемая в машине, – это информационная структура, которая эффективно кодирует ограниченный массив информации, относящийся к определенному классу явлений в окружающей среде. Эта информационная структура может успешно применяться для надежных предсказаний, относящихся к данному классу. Машинная теория для класса явлений формулирует на языке машины некое инвариантное свойство, общее для всех элементов этого класса.[94] Машина получает информацию из среды и создает некоторые «конструкты» или гипотезы, которые в ходе этой «эволюции», этого «процесса познания» конкурируют друг с другом вплоть до или «взаимоуничтожения», или стабилизации.

Наибольшие трудности представляют: возникновение в машине исходных инвариантов, которое определяет последующие процессы создания гипотез; проблема емкости машинной памяти и скорости доступа к содержащейся там информации, а также регуляционное управление ростом «ассоциативных деревьев», каковыми являются лавинно разрастающиеся альтернативные рабочие варианты. При этом даже небольшое увеличение числа учитываемых переменных (допустим, речь идет о маятнике; вопрос формулируется так: сколько переменных нужно учесть, чтобы предсказать его будущие состояния?) приводит к краху всей этой программы. При пяти переменных большая цифровая машина способна пересмотреть все их возможные значения в течение двух часов со скоростью миллион операций в секунду. При шести переменных тот же процесс требует 30000 таких машин, работающих в течение нескольких десятков лет с максимальной скоростью. Из этого следует, что если переменные являются случайными (по крайней мере для нас, то есть пока мы не улавливаем ни малейшей связи между переменными), то никакая система вообще, ни искусственная, ни естественная, не сможет оперировать с числом переменных, превышающим несколько десятков, даже если бы она по размеру равнялась метагалактике.

Если бы кто-нибудь вздумал, например, построить машину, моделирующую социогенез (причем нужно было бы сопоставить серию переменных каждому человеку, жившему когда-либо со времен австралопитека), то такая задача была бы невыполнимой и в данное время и вообще. К счастью, этого не нужно. А если бы Природе пришлось подвергать регулированию импульс-спин и угловой момент каждого электрона в отдельности, то она никогда не создала бы живых систем. Ведь она не делает этого и на атомном уровне (нет организмов, которые состояли бы всего из двух миллионов атомов), поскольку не в силах регулировать квантовые флуктуации и броуновское движение. На этом уровне число независимых переменных оказывается слишком большим. Клеточное строение организмов, следовательно, не столько результат того, что первичные живые системы были одноклеточными, сколько следствие необходимости, корни которой уходят гораздо глубже в фундаментальные свойства материи. Иерархичность строения системы – это предоставление относительной автономности различным ее уровням, подчиненным главному регулятору, но вместе с тем это и вынужденный отказ от контроля над всеми изменениями, происходящими в системе. Иерархичным должно бы быть и строение постулируемых нами будущих плодов имитологического древа. Этот вопрос мы вскоре рассмотрим. Сейчас нас будет интересовать сфера имитологической деятельности.

Повторим то, к чему мы уже пришли.

Построение модели, которая представляет собой динамически связанную систему переменных, признанных существенными, окупается лишь до определенной степени сложности. Очень важно знать границы применимости модели, то есть в каких пределах модель может воспроизводить ход реального явления. Отбор существенных переменных не является отказом от точности; наоборот, спасая нас от потопа несущественной информации, этот отбор позволяет быстрее обнаружить целый класс явлений, подобных данному, то есть создать теорию. Что является моделью, а что «оригинальным» явлением – это зависит от конкретных обстоятельств. Если нейтроны в цепной реакции размножаются в том же темпе, что и бактерии в питательной среде, то – с точки зрения параметров экспоненциального роста – одно из этих явлений может быть моделью другого. Если, например, удобнее исследовать бактерии, мы будем считать моделью бактериальную культуру. Если же, однако, модель начинает чрезмерно усложняться, то мы либо ищем модели иного типа, либо обращаемся к «эквивалентной» модели (человека моделируем другим человеком, входя «через боковую дверь» в процесс эмбриогенеза, как об этом говорилось выше).

Объем предварительных знаний должен быть тем большим, чем точнее требуемая модель. Наглядность модели не имеет никакого значения. Важно лишь, чтобы перед ней можно было «ставить вопросы» и получать на них ответы. Следует обратить внимание на различный подход к модели со стороны ученого и со стороны технолога. Технолог, получив возможность «синтеза живого организма» – если такова была его цель, – удовлетворится «конечным продуктом». Ученый – по крайней мере ученый в классическом понимании – стремится детально изучить «теорию синтеза организмов». Ученый жаждет алгоритма, технолог же скорее походит на садовника, который, сажая дерево и срывая яблоки, не заботится о том, «как яблоня это сделала». Ученый считает такой узкоутилитарный, прагматический подход прегрешением против канонов полного познания. Нам кажется, что в будущем обе эти позиции изменятся.

Модель сходна с теорией в том отношении, что она не учитывает ряда переменных – переменных, признанных для данного явления несущественными. Однако чем больше переменных учитывается в модели, тем в большей степени она превращается из «теоретического» воспроизведения в копию явления. Модель человеческого мозга – это динамическая структура, учитывающая переменные, существенные для каждого человеческого мозга, но модель мозга мистера Смита тем менее «применима» к какому-либо иному мозгу, чем более увеличивается «поверхность ее динамического контакта» со всеми процессами, происходящими в мозгу мистера Смита. В конце концов такая модель будет учитывать и то, что Смит не способен к математике, и даже то, что вчера он повстречал свою тетку. Разумеется, столь точная модель, являющаяся в некотором роде «буквальным» повторением явления (звезды Капеллы, мопсика Фильки или мистера Смита), нам не нужна.

Как явствует из сказанного, машина, которая с огромной скоростью копировала бы любое реальное явление, была бы универсальным плагиатором , и этот ее «всеучет» переменных как бы автоматически отключал ее от какой-либо творческой деятельности; ведь по существу эта деятельность означает селекцию , выбор одних переменных и отбрасывание других с целью обнаружить класс явлений, для которых динамические траектории учитываемых переменных являются общими. Законы поведения такого класса – это и есть теория.

Теории потому и возможны, что количество переменных отдельного явления несравненно больше количества переменных, общих для него и для множества других явлений, причем эти первые переменные дозволено – с точки зрения целей, поставленных наукой, – игнорировать. Поэтому можно отказаться от изучения истории индивидуальных молекул или от того, встретил ли вчера мистер Смит свою тетку, а также от миллионов других переменных.

Правда, подход физики и биологии к их явлениям существенно различен. Атомы взаимозаменимы, организмы же – нет. Индивидуальная история атома несущественна для всей современной физики (кроме одной гипотезы, относящейся к «покраснению» фотонов, испускаемых атомом). Атом мог прилететь с Солнца или отделиться от кусочка угля, лежащего в подвале, – его свойства от этого нисколько не меняются. Но вот если тетка отказала мистеру Смиту в наследстве, отчего мистер Смит вконец потерял голову, эта переменная становится весьма существенной. Мистера Смита можно как-никак понять, но лишь потому, что мы сами очень на него похожи. Другое дело с атомами. Если создают теорию ядерных сил, а потом спрашивают, что это, собственно, такое «на самом-то деле» – псевдоскалярные связи, то вопрос этот лишен смысла. Привязав к операциям нашего алгоритма какие-либо термины, мы не вправе требовать, чтобы эти термины выражали нечто иное, нечто не имеющее связи именно с этими шагами алгоритма. Можно самое большее ответить: «Если вы проделаете такие-то и такие-то преобразования на бумаге, а потом вот это подставите вот туда, то в результате вы получите два с половиной, а потом, если вы сделаете то-то и то-то в лаборатории и посмотрите на вот эту стрелку прибора, то она остановится посредине между делениями 2 и 3». Опыт подтвердил результаты теории, и поэтому мы будем пользоваться понятием псевдоскалярных связей и всей прочей терминологией.
[1] [2] [3] [4]



Добавить комментарий

  • Обязательные поля обозначены *.

If you have trouble reading the code, click on the code itself to generate a new random code.