Счастливые числа

[1] [2]

Счастливые числа

Однажды в Принстоне я сидел в комнате отдыха и случайно услышал, как математики говорят о ряде для ex , который выглядит как 1 + x + x2/2! + x3/3! + … Каждый последующий член ряда получается при умножении предыдущего члена на x и его делении на следующее порядковое число. Например, чтобы получить член, следующий за x4/4! , нужно умножить этот член на x и разделить на 5. Все очень просто.

Когда я был ребенком, я просто восхищался рядами и нередко забавлялся с ними. С помощью ряда, о котором шла речь, я вычислял e и видел, как быстро уменьшаются последующие члены.

Я пробормотал что-то вроде того, как легко можно вычислить любую степень e с помощью этого ряда (достаточно просто подставить эту степень вместо x ).

– Да? – сказали они. «Отлично, чему равно e в степени 3,3?» – спросил какой-то шутник. По-моему, это был Таки.

Я говорю: «Легко. 27,11».

Таки знает, что вычислить это в уме совсем нелегко. «Эй! Как тебе это удалось?»

Другой парень говорит: «Ну вы же знаете Фейнмана, он просто выдумал это число. На самом деле оно неправильное».

Они идут за таблицей, а я тем временем добавляю еще несколько цифр. «27,1126», – говорю я.

Они находят число в таблице. «Правильно! Но как ты это сделал?»

– Я просто суммировал ряд.

– Никто не умеет суммировать ряды так быстро. Ты, видимо, просто знал это число. А чему равно e в степени 3?

– Слушайте, – говорю я. – Это сложная работа! Я могу посчитать только одну степень в день!

– Ага! Это надувательство! – обрадовались они.

– О'кей, – говорю я. – 20,085.

Пока они ищут число в книжке, я добавляю еще несколько цифр. Теперь они возбуждаются, потому что я правильно назвал еще одно число.

Итак, все великие математики современности озадачены тем, как мне удается подсчитать любую степень e ! Один из них говорит: «Не может быть, чтобы он просто подставлял это число и суммировал ряд – это слишком сложно. Тут есть какой-то трюк. Ты не сможешь вычислить какое угодно число, например, e в степени 1,4».

Я говорю: «Да, работа не из легких. Но для вас, так и быть. 4,05».

Пока они ищут ответ, я добавляю еще несколько цифр и говорю: «Все, на сегодня это последнее», и выхожу из комнаты.

Произошло же следующее. Я случайно знал три числа: натуральный логарифм 10 (который нужен, чтобы переводить числа от основания 10 к основанию e ), который равен 2,3026 (поэтому я знал, что e в степени 2,3 примерно равно 10), а из-за радиоактивности (средняя продолжительность жизни и период полураспада) я знал натуральный логарифм 2, который равен 0,69315 (поэтому я также знал, что e в степени 0,7 равно почти 2). Кроме того, я знал, что e (в степени 1) равно 2,71828.

Сначала меня попросили возвести e в степень 3,3. Это все равно, что e в степени 2,3 (то есть 10), умноженное на e , то есть 27,18. Пока они старались понять, как мне это удалось, я внес поправку на лишние 0,0026: 2,3026 – слегка завышенное число.

Я знал, что не смогу вычислить следующее число. Мне просто повезло, когда парень назвал e в степени 3: это e в степени 2,3, умноженное на e в степени 0,7 (или 10, умноженное на 2). Итак, я знал, что это 20 с чем-то, а пока они раздумывали над тем, как мне это удалось, я внес поправку на 0,693.

Ну уж теперь-то я был уверен, что не смогу вычислить следующее число, но мне опять повезло. Парень попросил посчитать е в степени 1,4, а это e в степени 0,7, умноженное на само себя. Так что все, что мне пришлось сделать, так это чуть-чуть подкорректировать четверку!

Они так никогда и не поняли, как мне это удалось.

Когда я был в Лос-Аламосе, я обнаружил, что Ханс Бете умеет превосходно считать. Например, как-то раз мы подставляли числа в формулу и дошли до возведения в квадрат числа 48. Я потянулся за калькулятором Маршан, он же сказал: «Это 2300». Я начинаю нажимать кнопки, а он говорит: «Если тебе нужно знать точно, то ответ 2304».

Машина говорит 2304. «Класс! Это же просто здорово!» – говорю я.

– Разве ты не знаешь, как возводят в квадрат числа, близкие к 50? – говорит он. – Возводишь в квадрат 50, это 2500, а потом вычитаешь 100, умноженное на разность нужного тебе числа и 50 (в данном случае эта разность равна 2), получается 2300. Если хочешь получить точный результат, возведи эту разность в квадрат и прибавь к полученному числу. Так и получается 2304.

Через несколько минут нам понадобилось взять кубический корень из 2,5. Чтобы взять кубический корень с помощью калькулятора Маршан, нужно воспользоваться таблицей для первого приближения. Я открываю ящик, чтобы взять эту таблицу, – на этот раз времени требуется немного больше, – а он говорит: «Примерно 1,35».

Я проверяю результат на Маршане, и он оказывается правильным. «А как ты это сделал? – спрашиваю я. – Ты владеешь секретом того, как брать кубический корень из числа?»

– О, – говорит он, – логарифм 2,5 равен стольки-то. Треть этого логарифма находится между логарифмом 1,3, который равен стольки-то, и логарифмом 1,4, который равен стольки-то, так что я просто применил метод интерполяции.

Итак, кое-что я выяснил: во-первых, он наизусть знает таблицы логарифмов, а во-вторых, один только объем арифметических действий, которые он проделал во время интерполяции, отнял бы у меня больше времени, чем если бы я просто подошел к столу и понажимал кнопки калькулятора. На меня это произвело колоссальное впечатление.

После этого я тоже пытался проделать что-либо подобное. Я запомнил значения нескольких логарифмов и начал замечать, что происходит. Например, если кто-то спрашивает: «Чему равно 28 в квадрате?», замечаешь, что квадратный корень из двух равен 1,4, а 28 – это 20, умноженное на 1,4, поэтому 28 в квадрате должно примерно равняться 400, умноженному на 2, или 800.

Если кто-нибудь спрашивает, сколько получится, если разделить 1 на 1,73, то можно сразу ответить, что 0,577, потому что знаешь, что 1,73 – это почти квадратный корень из 3, поэтому 1/1,73 равно одной трети квадратного корня из 3. А если нужно определить отношение 1/1,75, оно равно величине обратной дроби 7/4, а вы помните, что если в знаменателе стоит 7, то десятичные цифры повторяются: 0,571428…

Меня очень забавляли мои собственные попытки быстрого выполнения арифметических действий с помощью хитрых приемов, а в особенности состязание с Хансом. Однако заметить что-либо, что упустил он, и указать ему на ответ мне удавалось крайне редко, но, когда все же удавалось, он от души смеялся. Он обладал уникальной способностью почти всегда находить ответ на любую задачу в пределах одного процента. Для него это не составляло особой сложности: каждое число было близко к какому-то другому, которое он знал.

Однажды я пребывал в особенно хорошем расположении духа. В техническом отделе был обеденный перерыв, и я не знаю, как такая идея могла прийти мне в голову, но я заявил: «За шестьдесят секунд я могу дать ответ с точностью до 10 процентов на любую задачу, которую кто-либо сумеет сформулировать за десять секунд!»

Люди начали давать мне задачи, которые казались им сложными, например, проинтегрировать функцию типа 1/(1+x4), которая практически не изменяется в названном ими диапазоне. Самой сложной задачей, которую мне дали, было определить биномиальный коэффициент x10 в выражении (1 + x)20. Я это сделал ровно за 60 секунд.

Все давали мне задачи, я чувствовал себя великим, когда в столовую вошел Пол Олам. До приезда в Лос-Аламос какое-то время Пол работал вместе со мной в Принстоне и всегда оказывался умнее меня. Например, однажды я в рассеянности играл одной из мерных лент, которые при нажатии кнопки, возвращаясь в рулетку, врезаются в руку. Лента все время слегка поворачивалась, и мне было немного больно. «Ой! – воскликнул я. – Ну и осел же я. Я продолжаю играть с этой штукой, а она каждый раз причиняет мне боль».

Он сказал: «Ты ее неправильно держишь», взял эту чертову штуковину, вытащил ленту, нажал кнопку, и она вернулась точно на место, не причинив ему боли.

– Здорово! Как ты это делаешь? – воскликнул я.

– Догадайся!

В течение следующих двух недель я хожу по Принстону, щелкая рулеткой и пытаясь загнать ленту на место, до тех пор пока на моей руке не остается живого места. Наконец, мое терпение лопается. «Поль! Я сдаюсь! Как, черт побери, ты держишь эту штуковину, что она не ранит твою руку?»

– А кто говорил, что не ранит? Мне тоже бывает больно!

Я почувствовал себя полным идиотом. Он сумел сделать так, что я две недели издевался над своей рукой!

Так вот, Пол проходит по столовой, где все просто стоят на ушах. «Эй, Пол! – кричат они. – Фейнман – просто супер! Мы даем ему задачу, которую можно сформулировать за десять секунд, и он за одну минуту дает ответ с точностью до 10 процентов. Дай ему какую-нибудь задачу!»

Почти не останавливаясь, он говорит: «Тангенс 10 градусов в сотой степени».

Я влип: для этого нужно делить на число пи до ста десятичных разрядов! Это было безнадежно!

Однажды я похвастался: «Я могу решить любой интеграл, который все остальные могут решить только с помощью интегрирования по контуру, другими способами».

Тогда Пол пишет мне просто огромный чертов интеграл, который он получил, начав с комплексной функции, ответ которой он знал. Он убрал вещественную часть этой функции и оставил лишь мнимую. Он развернул функцию так, что единственным возможным способом решения интеграла осталось интегрирование по контуру! Он все время подставлял мне такие подножки. Он был очень умен.

Когда я впервые попал в Бразилию, я как-то раз обедал, не помню во сколько, – я постоянно приходил в ресторан не вовремя, – поэтому и оказался единственным посетителем. Я ел рис с бифштексом (который обожал), а неподалеку стояли четыре официанта.
[1] [2]



Добавить комментарий

  • Обязательные поля обозначены *.

If you have trouble reading the code, click on the code itself to generate a new random code.